Using Messages

Overview

Starting with FACTS 7, messages may be entered into a database
(SMMSGS) of messages. Instead of setting the traditional Z$ to the actual
text of the message, it may be set to the code associated with the desired
message. The message program, SMCO020, then reads the message file to
get the actual text of the message.

A custom messages file may also be used, SMCMSG. Messages put into
SMCMSG take precedence over messages with the same code in
SMMSGS. This allows for customization of the messages without
changing the standard message file distributed with the software.

Standard messages may be entered or editted with the file maintenance
SMF996, and custom messages may be entered or editted with the file
maintenance SMF995.

One purpose of creating and using a message database is to allow for future

language independence. Software Solutions, Inc., recommends that all
messages be placed in the message database.

» Chapter Outline

Overview

Messages in Driver Programs
Messages in Other Programs
Assigning Message Codes

Using Variables in Messages

Telling the Drives to Issue No
Message

Copyright © 2000 Software Solutions, Inc. CONFIDENTIAL

Using Messages Technical Manual - FACTS 7.0

Messages in Driver Programs

When working with the driver programs, to give a message to the user, the
variable MESSAGE$ should be set to the message code. In most cases, this
variable should be set in conunction with GO_BACK or FAILED being set to 1.

Messages in Other Programs

Most existing programs set the variable Z$ and do a GOSUB 8810. To use the
message file, simply set Z$ to the message code instead of the message text.

Assigning Message Codes

Messages that occur frequently should be given descriptive code, such as
“BAD_DATE”, “CURR_GL_PER?”, etc., so they are easier to remember and
recognize. Messages that will likely be used only once should be given
numbers as the code.

Custom messages should be given codes that are unlikely to be used for
standard messages. Typically that would involve using some type of
consistent prefix that would not make sense for a descriptive code.

Using Variables in Messages

Frequently a message needs to have values filled in at runtime, like inserting
the bad Customer Number the user entered. To do this, you must first insert
the place holder where the value is to be inserted. Place holders are numbered
and are preceeded by a percent sign.

In the following example there are two values that would be filled in at
runtime:

Code: CREDIT_LIMIT
Text: Customer ‘%1’ has exceed the credit limit of $%2.

The program that issues the message should set Z$ or MESSAGES$ (depending
on context) to:

“CREDIT_LIMIT”+$0a$+customer_number$+$0a$+credit_limit$+$0a$

The value following the first $0a$ replaces %1 and the value following the
second $0a$ replaces %2. If customer_number$=" C100” and
credit_limit$=" 1000”, the message would be displayed as follows:

Customer © C100’ has exceeded the credit limit of $ 1000.
To prevent the blank spaces, CVS() the variables with ,3.

2 CONFIDENTIAL Copyright © 2000 Software Solutions, Inc.

Technical Manual - FACTS 7.0 Using Messages

Telling the Drivers to Issue No Message

When you set GO_BACK=L1 in a validation procedure, the driver will issue the
generic message “Invalid data in field” if you do not set MESSAGES$. To set
GO_BACK=1 and tell the driver that it should not issue any message at all, set
MESSAGE$="<none>".

Copyright © 2000 Software Solutions, Inc. 1-3

	Using Messages
	Overview
	Messages in Driver Programs
	Messages in Other Programs
	Assigning Message Codes
	Using Variables in Messages
	Telling the Drivers to Issue No Message

