
Copyright © 2000 Software Solutions, Inc. CONFIDENTIAL 1

Overview

SMPRMT Meta-data File

General Tab

Low Z [] Variables Tab

 High Z [] Variables Tab

Z$ Variables Tab

Standard and Custom
Procedures

Special Data Types and other
Functionality

GL Number Handling

Date/Period Handling

Picklists

Searches

Disabling Fields

Checkbox

Dropbox

Multi Line Entry

Label Only Prompts

Hypertext Links

Standalone Frames

!!!!Chapter Outline

Using SMPRMT

Overview
Use SMPRMT in conjunction with all other meta-data programs to define
which prompts should appear in a program, where they should appear
and how they should behave.

Using SMPRMT Technical Manual — FACTS 7.00

2 CONFIDENTIAL Copyright © 2000 Software Solutions, Inc.

SMPRMT Meta-data File

General Tab

Tab Screen – This is the tab screen number, as defined in SMFMFM or
SMENTY, that the SMPRMT field belongs on. Key fields must always be on
tab screen 0.

Tab Order – The tab order defines the sequence by which prompts are
accessed by hitting the tab key or return key. The tab order always starts at 10.
Key fields that are on the screen always take the lowest numbers in the tab
order and must be on tab screen zero. Hypertext links must have a tab order
between 900-999.

Example: In A/R Customer F/M the key field, Customer Number, gets the tab
order of 10, the subsequent fields on each tab screen get tab orders 11, 12,13,
etc.

Example: In A/R Ship-To F/M the key fields, Customer Number and Ship To
Number, get tab orders 10 and 11 respectively. The subsequent fields on each
tab screen get tab order numbers beginning with 12.

! The tab order must begin at 10 and ascend consecutively. The utility
program SMF997 may be used to insure that the tab order is correct.

Edit Line # - This field identifies the number the customer must enter in order
to access this field in the character file maintenance.

Technical Manual — FACTS 7.00 Using SMPRMT

Copyright © 2000 Software Solutions, Inc. CONFIDENTIAL 3

Frame – This field identifies the frame number the prompt belongs to. See the
frames help document for additional details.

Primary Key – This is checked based on whether or not the field belongs to the
primary file key. Fields marked as Key Elements must appear first on the
screen and in the tab order, and they must be on tab screen 0.

Redisplay – This flag and the Update field flag work together. Checking this
field will cause the driver programs to redisplay the screen when the value of
this field changes. In order to keep performance as high as possible, it will
only redisplay those fields which are have Update Field checked.

Update Field – This flag works in combination with the Redisplay flag. When
the drivers redisplay that screen, it only redisplays fields with this flag set.

! The typical use of these two fields is when the value of a field impacts the
value of another field. The field that causes the change should be flagged as
Redisplay, and the field that gets changed should be flagged as Update.

! You can force the redisplay of the screen by setting the variable
REDISPLAY in a validation or function key procedure.

Security Code Eval – This field defines the security code(s) necessary for this
field to be accessed. Leaving it blank indicates no security code is required.
See the security code help document for details on how this field may be set.

Disable Condition – This is a boolean expression. If the expression evaluates
to true (or a value of 1), the field will be disabled at runtime. The data will be
displayed, but the user will not be able to change its contents. Fields can be
permanently disabled by putting the number 1 in this field.

Exclude Condition – This is a boolean expression. If the expression evaluates
to true, the field will not be present. The condition is only evaluated when the
program starts, so the condition cannot be based on information that changes
after the program has started. For example, you could base the exclude
condition on a static control file setting, but in customer file maintenance, you
could not base it on a value in the customer record (which can change based on
which customer is entered).

Paragraph – This field is not currently used by FACTS. It will eventually allow
the user to enter multiple lines of text within the same prompt.

Edit Field Eval (Y/N/B) – The edit field eval must be an expression the
evaluates to either Y (Yes), N (No) or B (Backup Into). If it evaluates to Y, the
driver will allow the user to edit this field. If it evalutes to N, the field will be
skipped and completely unavailable in CUI but the user will be able to click
into the field in GUI. If you want the field to be completely inaccessible, use
the disable condition. If it evaluates to B, the user may access the field by F4-
ing back into it.

Length Eval – This is the length of the entry field.

ML Width – This is the width of the multi_line field created for GUI screens. If
this is left blank, the driver will use the Length + 2. This field is not used in
CUI at this time.

Using SMPRMT Technical Manual — FACTS 7.00

4 CONFIDENTIAL Copyright © 2000 Software Solutions, Inc.

Display Eval – This is the expression that will be displayed on the screen while
not editting the field. Usually this is the same as the variable being edited, but
in some cases a funtion may need to be applied for display purposes:

Example: fn%ldate$(f.open_date$,””,””)

In GUI, this field is only used for dates, periods and G/L #s. For all other
types of fields in GUI, the Variable Eval field is used.

Description Eval – This is the value to be displayed as the field description.

Desctiption Length – This is the number of characters of the description eval
to be displayed.

! The variable that holds the description must be maintained by a validation
routine and should be cleared in new record procedure.

Screen Label – This is the screen label for the prompt. You can have label-only
entries in SMPRMT that simply display a piece of information to the screen,
and they can be flagged as Update Field, meaning they can change values
using a variable.

! For file maintenance, the number the user enters to access the field in
character should be included in the label. The graphical driver will
automatically remove these numbers.

example: “ 9. Vendor”. The graphical driver only displays “Vendor.”

Placing a “:” (colon) at the end of the text portion of a checkbox label will cause
the text to appear on the left side of the checkbox input. If the last character of
the label is not a colon, the text will appear on the right side of the check box.

Column – This is the column position on the screen at which the screen label
begins. If it is a label only entry, this column applies to both GUI and CUI, but
if it is an actual prompt, the GUI driver calculates the label as being right
justified from the variable column location with a consistent margin between
them. Typically this field involves a calculation using the global variable
%GUI to fine-tune the location for character vs. graphical.

You can create a right-justified label by entering a negative number for the
column. The label will END at the absolute value of the column specified.

Row – This is the vertical row position on the screen at which the screen label
begins.

Font Attribute – This variable controls the attribute used in the ‘font’
mnemonic. See the ProvideX documentation on the options available. This is
only applicable to the GUI interface.

Print Attribute – This is a value that is printed immediately prior to displaying
the label. It may contain values such as ‘red’ or ‘sf’ to force the label to be
printed in red or foreground. This value affects both the CUI and GUI
interfaces, but is more commonly used in the CUI side. Be sure the mnemonics
used in this field are appropriate for both CUI and GUI. You may use
conditional logic like tbl() or fn%if$() if necessary.

Variable – This is the variable to be read/edited/written to by the driver. In
most cases, this variable is the entire field, but in the case of a G/L Number, it

Technical Manual — FACTS 7.00 Using SMPRMT

Copyright © 2000 Software Solutions, Inc. CONFIDENTIAL 5

should only be the last %G0 characters of the variable. See the section at the
end of this document that explains G/L Number usage.

When using the answer driver or the display driver, this must be a discreet
variable. Functions or calculations are not allowed because this field is used to
build the call/enter list for the driver.

In GUI, this is the value written to the control except in the case of dates,
periods or G/L #s.

Column – This is the horizontal position on the screen at which the variable is
displayed. In GUI, this is also the position it is edited. In CUI, the variable is
edited at the Z[0] Eval location.

Row – This is the vertical row on the screen at which the variable is displayed.
In GUI, this is where the control is created. In CUI, the variable is edited at the
Z[1] Eval location and displayed at this location.

Font Attribute – This variable controls the attribute used in the font portion of
the multi_line statement. This only applies to GUI.

Print Attribute – This is used only in the CUI interface and is printed
immediately prior to printing the variable itself. You can use this to change the
color or intensity of the variable being displayed.

opt= String – This is used for multi_line fields in GUI only, and allows you to
set the opt= settings of the multi_line statement. “B” is borderless. “L” is
locked. See the ProvideX documentation on the multi_line statement for the
available opt= strings.

Tip Eval – This field allows you to establish a pop-up tool tip for the field.
This applies to GUI only.

Grid Entry – Checking this indicates that this is a multi-entry field like the
Document Number fields in Pick Ticket Print. It allows the user to enter many
of the same kind of values. In GUI, this generates a grid control. In CUI it is
manually controlled.

Columns – This is the number of columns that may be used by the grid control.
Use the %GUI boolean variable to change this value for GUI and CUI.

Rows – This is the number of rows that may be used by the grid control.

Using SMPRMT Technical Manual — FACTS 7.00

6 CONFIDENTIAL Copyright © 2000 Software Solutions, Inc.

Low Z[] Vars Tab

The fields on this tab all apply to CUI, but only a few impact the GUI interface.
The mandatory input flag is used in the graphical interface when it is set to 4
for password entry, and the Pad Flag is used in GUI when creating multi_line
fields to control whether the field is left or right justified.

Character Input Column – same as old variable Z[0]

Character Input Row – same as old variable Z[1]

Spaces to Clear After Input – same as old variable Z[2]

Mandatory Input Flag – same as old variable Z[3]

Pad Flag – same as old variable Z[4]. This should always be 1 for numeric
fields.

Ring Bell – same as old variable Z[5]

Technical Manual — FACTS 7.00 Using SMPRMT

Copyright © 2000 Software Solutions, Inc. CONFIDENTIAL 7

Escape Flag – same as old variable Z[8]

Line # for Primary Input – usually set to 22, same as old variable Z[10]

High Z[] Vars Tab

Return Direction Keys – same as old variable Z[12]. This field should be set to
4 for most fields, as this allows the character interface to be navigated with the
page-up and page-down keys.

Initial Cursor Position – same as old variable Z[13]

CVS Input Value – same as old variable Z[14]. This variable is used in the
GUI interface when creating the multi_line field. If it is set to 4, the multi_line
will force all entry to uppercase.

Input Timeout Value – same as old variable Z[15]. For the answer/entry
driver, this field should be set to _timeout if you want to use a timeout.

Auto Exit On/Off – same as old variable Z[16]

Input Type Flag –Z[17]- special input type - 1=date only, 2=date or other
values, 10=period, 11=period or other values, 20=GL account number. In the
original design of the drivers this field could be set to 15 to indicate a grid
entry. In the current design, there is a separate check box on the general tab to
indicate a grid entry.

Z[18] - not used

Using SMPRMT Technical Manual — FACTS 7.00

8 CONFIDENTIAL Copyright © 2000 Software Solutions, Inc.

Z[19] – In a CUI interface, set this variable to 1 to indicate that the CUI menu is
available. If you are using a character entry routine within a GUI interface, set
this to the CTL value of the menu_bar.

Z[20] – This gets set to 1 is you are running a CUI input from within a GUI
window. It causes the Z0$, Z1$, and Z2$ values to be displayed in the status
bar instead of being printed on the screen.

Z$ Vars Tab

Pad Character – This should either be “” or a one-character string expression.
Same as old Z$ variable.

Associated Input Prompt – Same as the old Z0$ variable.

Primary Input Prompt – Same as the old Z1$ variable.

Secondary Input Prompt – Same as the old Z2$ variable. To allow F4 from a
particular field, this field must have a value in it.

Default Value – Same as the old Z3$ variable.

Initial Value – a new variable that is used for new record defaults (the old
architecture equivalent for f/m’s would be the variables set in the 1200 block).

Valid Value String – Same as the old Z4$ variable. If it evaluates to YN or NY,
the GUI interface will create a check box. Otherwise, if it has a value, the GUI

Technical Manual — FACTS 7.00 Using SMPRMT

Copyright © 2000 Software Solutions, Inc. CONFIDENTIAL 9

interface will create a drop box. To add descriptions to the drop box or create a
pick list for the CUI interface, create a pre-input procedure and set PICKS$ and
USE_PICKLIST.

Format Mask – Same as the old Z5$ variable. Usually required for date,
periods, and numeric inputs.

Skip Value – Same as old Z6$ variable. Not used in the GUI interface.

Standard and Custom Procedures Tab
Pre Input Procedure

In SMPRMT, the programmer can specify a procedure (both standard and
custom) to be executed prior to entering the field (in CUI) and prior to
evaluating the data (in GUI).

These routines are performed after all of the standard variables are set (e.g. the
Z$ variables and the Z[ALL] variables). The programmer can modify the value
of these variables, or set several others to affect the way the field is handled by
the driver.

By setting PICKS$, GUI users will have the benefit of extended descriptions in
drop boxes. By setting USE_PICKLIST=1 and the other pick list variables, CUI
users will get a character based pick list.

Using SMPRMT Technical Manual — FACTS 7.00

10 CONFIDENTIAL Copyright © 2000 Software Solutions, Inc.

By setting SKIP_INPUT=1, the field will be skipped in CUI and not validated.
By setting EFLD$=”N”, the field will be skipped and validated.

Used to handle any processing that occurs prior to input. In the code below a
pick list is established for the “Use Clippership” entry field. Primarily used to
set picklists.

20700 PRE_USE_CLIP: ! 20700

20710 setesc 9710; seterr 9810
20720 let SHOW_VALID=1,START_X=Z[0]+Z+1,START_Y=Z[1],PICKS$=
20720:$0A$+"This is a Clippership Carrier"+$0A$+"This is a Non-Clippership
20720:Carrier"+$0A$

20730 let USE_PICKLIST=1

20790 return

Funtion Key Fields

Function Key Procedure

You may assign a procedure to be performed when a function key is hit while
in the field. In SMPRMT, specify the location of the code associated with the
function key, the title of the functionality and the bitmap for GUI users.

The driver will update the prompt to tell the user that the function key is
available (e.g. F2-Search).

When the function key is pressed or if the GUI user clicks the button, the driver
will perform the routine specified in SMPRMT.

In the procedure, the programmer can set the variable GO_BACK=1 to cause
the driver to return to the field instead of attempting to go to the next field.

GUI-CUI Flag

This flag may be used to make the function key logic available to only GUI
users, only CUI users, or both GUI and CUI users. The default is both. This is
useful when the logic is specifically related to the CUI interface or when the
function can’t be provided to a CUI user.

For example, displaying a bitmap image related to the field would not be
possible for a CUI user, and allowing the user to hit F3 for defaults would not
be necessary for a GUI user.

Function Key Value

Many prompts in FACTS allow the user to press a function key to access a
special value for the field (e.g. F1=None or F1=Last). Assigning a function key
to the value facilitates the process of entering that value.

Additionally, the value that is actually stored in the variable may or may not be
what is displayed on the screen. In many cases, we display “Last” on the
screen, but we store all lower case Zs in the variable. Other times, we display
“None” but store all spaces.

Technical Manual — FACTS 7.00 Using SMPRMT

Copyright © 2000 Software Solutions, Inc. CONFIDENTIAL 11

By indicating in SMPRMT a value associated with a function key and a title,
the entry driver will insert into the prompt the appropriate text, for example
(F1=None). For GUI users, specify a bitmap file to place on the button that is
created.

When the function key is press or the button is clicked, the value indicated is
placed in the variable, and the field is displayed as blank. By setting a
description value for the same field, the driver will display the appropriate
terminology on the screen.

Sample Description Eval: fn%if$(x3$=evs(f1_val$),evs(f1_title$),end_desc$)

In this example, if the variable X3$ contains the F1 function key value, the
description will be the F1 function key title (see below). Otherwise it will be
the variable end_desc$.

The final step is to use the standard expand and compress routines to cause the
driver to display the appropriate information to the screen. These are the
default expand and compress procedures which should always be used
whenever using function key values.

Compress procedure: prog/SM/SMC999;compress_val

Expand procedure: prog/SM/SMC999;expand_val

Function Key Title

This is an expression that evaluates to the title of the function key option. This
title will be included in the main prompt and will be the tool tip for the button
for GUI users.

NOTE: The driver will always put the “F3-Next Record” in the main prompt
for key elements in a file maintenance. Consequently, you cannot use the F3
function key for your programming purposes on any of the key fields in file
maintenances.

Function Key Bitmap

This should be the name of the bitmap to appear on the button associated with
the function key. The bitmap file must exist in the ProvideX bitmap library,
usually pvx\lib_bmp. This bitmap library must reside on each of the WindX
client’s PCs.

Validation Procedure

This procedure is performed to validate the contents of the field. The routine
will receive the value of the field in X$.

The variable GO_BACK should always initialized to zero (if the GO_BACK
variable is not set to zero, the driver will maintain a GO_BACK value of –1,
meaning that validation has not taken place and processing will not continue.)

The validation procedure is also used to set descriptions of the validated field.
When this is the case, you can flag the routine as Val On Read Rec. When a
new record is read in a file maintenance, the validation routine will
automatically be performed so the description is correct.

Using SMPRMT Technical Manual — FACTS 7.00

12 CONFIDENTIAL Copyright © 2000 Software Solutions, Inc.

In the code below, the value entered for warehouse is validated and the
description, WHSE_DESC$ is set. The variable GO_BACK is initialized to zero,
then returned as 1 if the validation fails.

21100 VAL_WHSE: ! 21100

21110 let GO_BACK=0,WHSE_DESC$=”Not on File”

21120 find (SMCNTL,key="ICW"+%A0$+X$+"00",dom=*next)*,*,*,*,
21120:WHSE_DESC$; GOTO *RETURN

21130 GO_BACK=1

21190 return

Val on Read Record

As noted above, this flag instructs the file maintenance driver to automatically
perform this validation routine when a new record is read, ensuring the
description variable stays in sync with the data.

Custom Order Field

When you create a custom procedure, you can specify whether that procedure
is performed before, after or instead of the standard procedure. A custom pre-
input procedure will always be performed after the standard pre-input
procedure.

For all of the other fields on the Custom Procedures Tab, the value placed in
the field replaces its counterpart on the Standard Procedures Tab.

Expand/Compress Procedures

When the value that is stored in the file/variable differs from what is to be
displayed on the screen, expand and compress procedures should be used.

Prior to displaying the data, the value from the file will be placed in X$, and
the expand routine will be performed. The expand procedure can change the
value in X$ to the value that should be displayed. If it does change the value in
X$, it should set the variable EXPANDED to 1.

When the data is put back into the file, the value the user entered will be put
into X$ and the compress routine will be performed. If the procedure changes
the value in X$, it should set the variable COMPRESSED to 1.

Both routines should place the updated value back into X$.

Example 1: Some programs display and allow the user to edit a quantity in the
selling unit of measure, but the data is stored in the smallest unit of measure.
The expand routine would take the quantity in X$ (which would be in smallest
UM) and convert it to the selling UM to be displayed and set EXPANDED=1.
The compress routine would take the quantity in X$ (which would be in selling
UM) and convert it to smallest UM for storage in the data file and set
COMPRESSED=1.

Example 2: Many reports store all lower case z’s in X2$ to indicate “Last”. An
expand routine would check to see if X$ were all lower case z’s, and if so set X$
to all spaces (or the word “Last”) and EXPANDED to 1. A compress routine

Technical Manual — FACTS 7.00 Using SMPRMT

Copyright © 2000 Software Solutions, Inc. CONFIDENTIAL 13

would check to see if X$ were all spaces (or the word “Last”), and if so set X$ to
all lower case Zs and COMPRESSED to 1.

Special Data Types/Other Functionality
GL Number Handling

For G/L Numbers, always set

Z[17] Eval (Input Type Flag) to 20;

Z[4] Eval (Pad Flag) to 0;

Initial Value to DIM(10,”0”);

Length to LEN(%h0$);

Display Eval to STR(-NUM(variable$):%H0$);

Description Eval to the proper variable (BANK_GL_DESC$ in the example
below);

Variable Eval to variable$(11-%G0);

Z3$ Eval to variable$(11-%G0);

Z5$ Eval to DIM(%G0,”0”).

Create a validation routine and flag it as Val On Read Rec.

Example:

20600 VAL_BANK_GL:

20602 setesc 9710; seterr 9810

20605 let GO_BACK=0

20610 perform "prog/SM/SMC999;val_gl_num";let
20610:BANK_GL_DESC$=GL_NUM_DESC$

20620 return

Date/Period Handling

Date Handling

For dates, always set

Length Eval to 10;

Z[4] Eval (Pad Flag) to zero;

Display Eval to fn%ldate$(variable$,"","");

Z[17] Eval (Input Type Flag) to 1 or 2

Period Handling

For periods, always set

Length Eval to 7;

Using SMPRMT Technical Manual — FACTS 7.00

14 CONFIDENTIAL Copyright © 2000 Software Solutions, Inc.

Display Eval to fn%lpd$(variable$,x) - where x=0 for ppyy and x=1 for yypp;

Z5$ Eval = “PPYY”+period_string$ or “YYPP”+period_string$

Z[4] Eval (Pad Flag) to 0;

Z[17] Eval to 10 or 11.

Picklist

A picklist offers a list of selections valid for a particular prompt. Create a pre-
input procedure similar to the following example:

22100 PRE_TAX_RATE: ! 22100

22105 setesc 9710; seterr 9810

22110 let
PICKS$=$0A$+"High"+$0A$+"Low"+$0A$+"Exempt"+$0A$,VALUES$="HLE",
22110:SHOW_VALID=1,BLANKS=0,MULTI_PICK=1,START_X=Z[0]+5,STAR
T_Y=Z[1]-22110:1,USE_PICKLIST=1

22120 return

Technical Manual — FACTS 7.00 Using SMPRMT

Copyright © 2000 Software Solutions, Inc. CONFIDENTIAL 15

Search

A search is set up as a function key procedure (usually F2), with the procedure
title eval set to “Search”, with the bitmap set to “find.bmp”

Most search routines are already present in SMC999 and may be referenced
directly.

Disabling Fields

In order to disable a field, enter a disable condition that evaluates to have a
value of one (true).

If the field is permanently disabled, just enter a “1” in the disable condition.

Locked or Borderless Fields

Sometimes you need a GUI field to be locked instead of disabled. En example
of this is the Freight field in the ending routine of Invoice Entry. The user
needs to enter the field where they can hit a function key to access the freight
entry window, but they are not allowed to change the data in the field. To do
this, put “L” in the opt=String field.

A borderless field does not display a box around the field. Descriptions are
created as Locked and Borderless. To create a borderless field, put “B” in the
opt=String field. For locked and borderless, put “LB” in the opt=String field.

These fields have no effect on the CUI interface, so you must impose the rules
for the CUI interface through a validation procedure. Again, see the Freight
field on the footer of Invoice Entry for an example.

Checkbox

A checkbox is created when a Z4_EVAL$ contains the values “YN” or “NY”.

Adding a “:” (colon) to the end of the screen label will cause the text to appear
on the left side of the check box. If the last character is not a colon, the text will
appear on the right side of the check box

Dropbox

A dropbox is created by the driver when the Valid Values String (Z4$ Eval) has
more than one value, and the values are not “YN” or “NY”.

A Z4_EVAL$ of “ACDEG” would offer the options A,C,D,E and G in a
dropbox (in order to have accompanying descriptions for these options, you
need to set up a picklist).

A Z4_EVAL$ of “YNB” would not offer a checkbox (even though the values
“YN” are offered). The additional “B” option causes the driver to create a
dropbox.

Multi Line Entry

A multi line entry allows you to enter text into a field (used by the majority of
FACTS prompts).

Using SMPRMT Technical Manual — FACTS 7.00

16 CONFIDENTIAL Copyright © 2000 Software Solutions, Inc.

The term “Multi Line” entry is a misnomer, this is acutally a single line entry
prompt in FACTS (Providex offers the capability of doing multi-line entries
with this command; however, we are not currently taking advantage of this
functionality.)

Label Only Prompts

To create a label only entry in SMPRMT, enter the appropriate Tab Screen and
a Tab Order of 0. Leave all other fields blank except for the Label field,
Column and Row for the Label, and optionally the Font and Print Attributes.

Hypertext Links

To create a hypertext link, first create a label only entry in SMPRMT, then
change the Tab Order to be in the 900-999 range and enter a Validation
Procedure. When the hypertext link is selected, the validation procedure will
be performed.

Stand-alone Frames

By entering a special entry in the Label field, you can create a stand-alone
frame. Enter the following in the label field:

FRAME:Frame Title

FRAME: is required to be entered exactly. Replace “Frame Title” with the title
you want to appear at the top left portion of the frame. Do not enter any
quotation marks in this field.

The frame will be drawn with the top left corner defined by the variable
column and row and the bottom left corner being defined by the label column
and row.

This type of frame does not have a number, so fields cannot be “placed” in it
by entering a frame number in the frame field.

	Using SMPRMT
	Overview
	SMPRMT Meta-data File
	General Tab
	Low Z[] Vars Tab
	High Z[] Vars Tab
	Z$ Vars Tab

	Standard and Custom Procedures Tab
	Pre Input Procedure
	Funtion Key Fields
	Function Key Procedure
	GUI-CUI Flag
	Function Key Value
	Function Key Title
	Function Key Bitmap

	Validation Procedure
	Val on Read Record
	Custom Order Field

	Expand/Compress Procedures

	Special Data Types/Other Functionality
	GL Number Handling
	Date/Period Handling
	Date Handling
	Period Handling

	Picklist
	Search
	Disabling Fields
	Locked or Borderless Fields
	Checkbox
	Dropbox
	Multi Line Entry
	Label Only Prompts
	Hypertext Links
	Stand-alone Frames

