
Copyright © 1999, Software Solutions, Inc. Page 1 of 9

File Maintenance Features

Feature Description GUI
Feature

CUI
Feature

F/M
Feature

Entry
Driver

Automatically maintains F/M audit information for
primary and custom data files as long as the F/M Audit
flag is set for that F/M.

Only the record(s) that changed (standard or custom) will
be put into F/M audit.

X X X

Creating tabs
Standard and custom tabbed display screens. Enter the tab
titles in SMFMFM, then indicate in SMPRMT which
prompts belong on which tab number.

The tab titles field takes the following form:

Tab#1:Tab Title;Tab#2:Tab Title

The standard tab numbers can be from 1 to 9. They do not
have to be sequential, and number may be skipped. The
tab titles must contain an & in front of the letter that will
be the hot key for accessing that tab screen.

The custom tab numbers can be from 10 to 18. They also
do not have to be sequential, and numbers may be skipped.
Custom tab titles must contain an & in front of the letter
that will be the hot key for accessing that tab screen.

The tab order of each tab screen must begin with 10 and
go sequentially up. You should use SMF997 to adjust the
tab order for each tab screen. When key elements are
present, their tab orders will begin with 10, so the tab
orders of the data on the tab screen will pick up
sequentially from the last key element.

X X X X

Initialization
Initialization procedures (standard and custom). Both are
executed, and if either fail, the f/m will not be run.

Programmer can set variable FAILED=1 to indicate that
the f/m should not be run. Example: The initialization
procedure required reading a control file record to set a
parameter, but the record was not on file, therefore the
program could not be run. The programmer is responsible
for providing an appropriate message.

X X X

Templates
Template procedures (standard and custom). Both are
performed, and if either fail, the f/m will not be run.

The standard template must dimension F$ for the primary
data file.

The custom template must dimension CF$ for the custom

X X X

Copyright © 1999, Software Solutions, Inc. Page 2 of 9

data file.
Custom data
Automatic support for custom data files. Custom data
files, when specified in SMFMFM, will be maintained
automatically.

The key structure must be identical to the key structure of
the primary data file if it is using an external key. If it is
using a MKEYED file, it can have any structure, but the
primary key must match the primary key of the standard
data file.

X X X

Creating frames
Automatic frames. By entering a frame description in
SMFMFM and putting a frame # in for specific prompts in
SMPRMT, a frame will be drawn automatically around all
of the fields indicated. Each entry in the frame field in
SMFMFM takes the following form:

Frame#:Frame Title:Style(l,t,r,b)

Frame #s must begin with one and go up, not skipping any
numbers. They do not have to be in order.

Frame titles are required.

Style is an optional field and is a number indicating a flat
frame (0), a raised frame (positive) or an inset frame
(negative). The default and standard is flat (0).

(l,t,r,b) is used to indicate anchor locations for the frame.
l=left anchor, t=top anchor, r=right anchor, b=bottom
anchor. Anchors for left and top become maximum screen
locations for the frame. Anchors for right and bottom
become minimum screen locations for the frame. Putting
a zero in a position indicates no anchor for that position.

Example: (0,4,65,0) would indicate that the frame should
begin no lower that the fourth line down and no closer
than the 65th column in from the right. If the program
calculate a top screen location of 3, it would begin there.
If it calculated a top screen location of 5, it would begin at
4.

If multiple frames appear on a screen, you can associate
the frames either horizontally or vertically.
Horizontal association means that the frames appear
beside each other and the top and bottom lines of the
frames should match. To indicate a horizontal association,
place square brackets around the frames that are to be
associated.

Example: 1:Frame 1;[3:Frame 3;2:Frame 2] Horizontally
associates frames 2 and 3.

Vertical association means the frames appear above/below
each other and the left and right sides of the frames should

X X

Copyright © 1999, Software Solutions, Inc. Page 3 of 9

match. To indicate a vertical association, place less than
and greater than symbols around the frames that are to be
associated.

Example: <1:Frame 1;3:Frame 3>;2:Frame 2 Vertically
associates frames 1 and 3.

A single frame may not be both horizontally associated
and vertically associated at the same time.
Manual frames
You can create a manual frame by entering a record in
SMPRMT where the label eval takes the following form:

FRAME:Title

Then put into the variable column and row the coordinates
for the upper left corner of the frame. Put the coordinates
for the lower right corner of the frame in the label column
and row.

The frame will always be drawn as a flat frame.

X X X

Single file F/Ms
Single record file maintenance for control file records like
IC Static Control F/M. These will have no key elements to
enter.

X X X

Multi file F/Ms
Multiple record file maintenance for allowing access to
many records (like Customer F/M).

X X X

Running compares
Record changed status is determined by comparing the
original record with the current record (both for the
standard file and the custom file). If you edit a field, then
change it back to the original value, the f/m will not ask
you if you want to save the changes, as it doesn’t see a
change.

X X X

OK to Save procedure
In SMFMFM, the programmer can indicate a procedure
(standard and custom) to execute when the user selects the
Save button. The procedure should set the variable
OK_TO_SAVE to zero if they do not want the user to be
able to save the record.

Any appropriate message is the responsibility of the ok to
save procedure.

The standard procedure is executed first, then the custom
procedure.

X X X

Save procedure
In SMFMFM, the programmer can indicate a procedure
(standard and custom) to execute when the record is
actually saved.

The standard procedure is executed first, then the custom
procedure. Both are executed prior to the record being
saved.

X X X

Copyright © 1999, Software Solutions, Inc. Page 4 of 9

OK to Delete procedure
In SMFMFM, the programmer can indicate a procedure
(standard and custom) to execute prior to the record being
deleted.

The procedure must set the variable OK_TO_DELETE=0
if the record may not be deleted. Any appropriate message
is the responsibility of the procedure.

X X X

Delete procedure
In SMFMFM, the programmer can indicate a procedure
(standard and custom) to execute after the records are
deleted from the data files.

The standard procedure will be executed first, then the
custom procedure.

X X X

Go to first record in file
In GUI, click the button. In CUI, press the page up key. X X X X
Go to last record in file
In GUI, click the button. In CUI, press the page down
key.

X X X X

Go to previous record
In GUI, click the button. In CUI, press the up arrow
key.

X X X X

Go to next record
In GUI, click the button. In CUI, press the down arrow
key.

X X X X

Continued input in CUI
When the user selects a line to edit and presses the F2 key,
they can navigate through all of the fields on the screen
with the page up and page down keys.

X X X

Read record procedure
In SMFMFM, the programmer can indicate a procedure
(standard and custom) to execute each time a record is
read from the data file.

When a record is read, first the record is first extracted,
then the custom file’s record is extracted. Then the
standard read record procedure is executed, then the
custom read record procedure is executed.

You might use the read record procedure to read
supporting data from external files (e.g. description of a
customer class). In these cases, it is most efficient to use
the standard validation routine for that field instead of
rewriting the logic. Setting X$ equal to the field (e.g.
X$=F.CLASS$) then performing the validation routine
will prevent writing redundant code.

X X X

New record procedure
In SMFMFM, the programmer can indicate a procedure
(standard and custom) to execute when the user first enters
the program and when they return to the key elements to
enter or select a new record.

The program first executes the template procedures for
both the standard and the custom files, then it executes the

X X X

Copyright © 1999, Software Solutions, Inc. Page 5 of 9

standard new record procedure, then the custom new
record procedure.

This procedure should establish defaults for fields, clear
supporting data elements (e.g. Customer Class
Description), etc.
Button location options
In GUI, the buttons for Save, Delete, New Record and Exit
can be placed in one of three locations. Setting the
“Bottom Buttons” field in SMFMFM, they can be
horizontally aligned and right justified at the bottom of the
screen (Y), vertically aligned and right justified at the top
of the data area (N), or placed as a toolbar with icons only
directly below the navigation buttons (T).

X X

Display procedures
In SMFMFM, the programmer can indicate a procedure
(standard and custom) to be performed when the screen is
displayed. The procedure is executed each time the screen
labels (as opposed to data) are displayed, including at the
beginning of the program and each time the user changes
tab screens.

X X X

Label only entries in SMPRMT
Records can be entered in SMPRMT that are for display
purposes only. That can include screen labels and/or data.
For fields that users cannot edit, set the Tab Order to zero.

X X X

Expand and Compress procedures
When the value that is stored in the file/variable differs
from what is to be displayed on the screen, expand and
compress routines may be established in SMPRMT.

Prior to displaying the data, the value from the file will be
placed in X$, and the expand routine will be performed.

When the data is put back into the file, the value the user
entered will be put into X$ and the compress routine will
be performed.

Both routines should place the updated value back into X$.

Example 1: Some programs display and allow the user to
edit a quantity in the selling unit of measure, but the data
is stored in the smallest unit of measure. The expand
routine would take the quantity in X$ (which would be in
smallest UM) and convert it to the selling UM to be
displayed. The compress routine would take the quantity
in X$ (should would be in selling UM) and convert it to
smallest UM for storage in the data file.

Example 2: Many reports store all lower case z’s in X2$
to indicate “Last”. An expand routine would check to see
if X$ were all lower case z’s, and if so set X$ to all spaces
(or the word “Last”). A compress routine would check to
see if X$ were all spaces (or the word “Last”), and if so set
X$ to all lower case z’s.

X X X

Description labels
Some fields – usually those containing codes – require

Copyright © 1999, Software Solutions, Inc. Page 6 of 9

descriptions or explanations of the data that will appear in
the prompt (e.g. Item Class and its description).

In SMPRMT, the programmer can specify a description
eval and a description length that will automatically
display when the data displays. This feature manifests in
two basic ways:

1. The programmer can hard-code a description based on
the value of the data: Example:
fn%if$(f.field$=”zzzz”,”Last”,””)

2. The programmer can rely on a validation routine to
retrieve or set the value. In this case, the read record
procedure would need to set X$=F.FIELD$ and perform
the validation routine for the field.

The validation routine is responsible for setting the
specific value. For example, if the field were item class
(F.ITEM_CLASS$), the read record procedure would do
the following:

X$=F.ITEM_CLASS$; perform
“prog/SM/SMC999;val_item_class”

Val_item_class in SMC999 sets ITEM_CLASS_DESC$
to the actual description of the item class in X$, or “Not on
File” if the item class isn’t found.

In this case, item_class_desc$ would be placed in the
description eval field in SMPRMT.

!! Don’t forget to enter a description length.
Function key handling — values
Many prompts in FACTS allow the user to press a
function key to access a special value for the field (e.g.
F1=None or F1=Last). Assigning a function key to the
value facilitates the process of entering that value.

Additionally, the value that is actually stored in the
variable may or may not be what is displayed on the
screen. In many cases, we display “Last” on the screen,
but we store all lower case z’s in the variable. Other
times, we display “None” but store all spaces.

By indicating in SMPRMT a value associated with a
function key and a title, the entry driver will insert into the
prompt the appropriate text (e.g. (F1=None)). For GUI
users, specify a bitmap file to place on the button that is
also created.

When the function key is press or the button pressed, the
value indicated is placed in the variable, and the field is
displayed as blank. By setting a description value for the
same field, the driver will display the appropriate
terminology on the screen.

X X X

Copyright © 1999, Software Solutions, Inc. Page 7 of 9

Sample Description Eval:
fn%if$(f.field$=”zzzz”,”Last”,””)

The final step is to use the standard expand and compress
routines to cause the driver to display the appropriate
information to the screen.

Compress procedure: prog/SM/SMC999;compress_val
Expand procedure: prog/SM/SMC999;expand_val

Function key handling — procedures
The other way to handle function keys is to assign a
procedure to it. In SMPRMT, specify the location of the
code associated with the function key, the title of the
functionality and the bitmap for GUI users.

The driver will update the prompt to tell the user that the
function key is available (e.g. F2-Search).

When the function key is pressed or if the GUI user clicks
the button, the driver will perform the routine specified in
SMPRMT.

In the procedure, the programmer can set the variable
GO_BACK=1 to cause the driver to return to the field
instead of attempting to go to the next field.

X X X

Date and period handling
The driver automatically handles dates and periods, storing
the values in the packed formats.

Simply set the Z[17] value in SMPRMT appropriately.

!! Don’t forget that setting Z[3]=3 allows blank dates to be
valid.

X X X

Tool tips
By specifying a tool tip in SMPRMT, a box containing
information entered in the Tip Eval automatically appears
when a users holds the mouse over that field. This a way
to provide quick, short hints throughout the system. By
default, Tool Tips are assigned to all buttons in FACTS.

X X

Automatic check boxes
When the valid values string (Z4$) in SMPRMT is set to
either “YN” or “NY”, the field will automatically be
created as a check box.

X X

Preinput procedures
In SMPRMT, the programmer can specify a procedure
(both standard and custom) to be executed prior to
entering the field (in CUI) and prior to evaluating the data
(in GUI).

These routines are performed after all of the standard
variables are set (e.g. the Z$ variables and the Z[ALL]
variables). The programmer can modify the value of these
variables, or set several others to affect the way the field is
handled by the driver.

X X X

Copyright © 1999, Software Solutions, Inc. Page 8 of 9

By setting PICKS$ GUI users will have the benefit of
extended descriptions in drop boxes. By setting
USE_PICKLIST=1 and the other pick list variables, CUI
users will get a character based pick list.

By setting SKIP_INPUT=1, the field will be skipped in
CUI and not validated. By setting EFLD$=”N”, the field
will be skipped and validated.
Automatic drop boxes
When there is a list of valid values (Z4$) that is not “YN”
and there is more than one valid value, the values will be
put into a drop box.

If the programmer sets PICKS$ in a preinput procedure,
the descriptions will be represented in the drop box
automatically.

X X

Security codes
In SMPRMT, a security code can be assigned to a field. If
a user has that security code, the field functions as normal.

If the user does not have that security code, the field will
be disabled (in GUI) or skipped (in CUI), and the data will
not be displayed.

X X X

Disable conditions
In SMPRMT, the programmer can specify a condition that,
if true, will cause the field to be disabled (in GUI) or
skipped (in CUI). The data will be displayed.

X X X

Redisplay data
In SMPRMT, a field can be flagged to redisplay the data
to the screen whenever the value of that field changes.

This is useful when one field impacts the values of other
fields or when the setting of that field can cause other
fields to be disabled (e.g. In A/R Terms Code F/M, if the
type is a cash type, most of the fields are not valid, but if
the type is not cash, they are available).

The programmer can also set the variable REDISPLAY=1
in a validation procedure to force the driver to redisplay
the data.

X X X

Validation of all data on all tabs
In GUI, the user is not forced to step through all of the
fields prior to attempting to save a record. Additionally, if
the user enters an invalid piece of data into a field, they are
not forced to correct the entry before being allowed to take
further action.

Therefore, when the user attempts to save a record, the
driver will go through all of the fields on all of the tab
screens validating each of them prior to allowing the
record to be saved.

If any of the fields are invalid, the driver will give a
message, display the field and give it focus. The record
will not be allowed to be saved until the data is corrected.

X X X

Copyright © 1999, Software Solutions, Inc. Page 9 of 9

	File Maintenance Features

